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1 V 

Preface 

The primary purpose of this paper was to modify av: air- 

to-air missile model used by the Cruise Missile Independent 

Survivability Team (CMIST) of the Aeronautical Systems 

Division (ASD). The model did not have incorporated within 

it, data pertinent to the cruise missile. The modification, 

integrated the required data into the model so that the 

model could be used to evaluate an air-to-air missile's 

performance against the cruise missile. 

The model itself utilizes a hypercomplex number algebra 

which avoids usage of direction cosine matrices and enables 

real time of flight output. Prior to the completion of this 

thesis, no adequate documentation existed that explained the 

algebra used and its translation into computer code. Bits 

and pieces were gathered together and combined into the 

appendices of this work, which should prove helpful in 

understanding the model. 

I wish to thank Captain Aaron DeWispelare for his 

encouragement and help in completing this work.  I also wish 

to thank Molly Bustard, my favorite librarian, who consis- 

tently provided a bright spot during many a dreary day these 

last eighteen months.  I must also acknowledge Bob and Diane 

Turelli, who provided an escape from the academic grind when 

it was needed, and finally my mother, sister and her family 

who gave me the moral help I needed to complete my studies. 
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Abstract 

The air-to-air missile model used by the Cruise Missile 

Independent Survivability Team did not contain data useful 

to the cruise missile. The objective of this study was to 

modify the subroutine SIGNAL in the model to incorporate 

the cruise missile data. The modification required an 

understanding of quaternion algebra utilised within the 

model to represent three-dimensional motion. These quater- 

nions allow real time outputs from the model for use by 

tactical ranges.  The study contains a discussion of qua- 

ternions and their algebra. 

vi'i 



I Introduction 

Problem Statement 

The Cruise Missile Independent Survivability Team 

(CMIST) obtained the computer model of the air-to-air mis- 

sile performance package utilized in the ACEVAL/AIMVAL pro- 

gram. The model involves a new technique of representing 

the mechanics of the air-to-air missile's flight by using 

quaternions. 

The hypercomplex quaternions were not used regularly 

in a computer at the Aeronautical Systems Division.  Major 

Ken Madsen (CMIST) expressed a desire for an analysis of 

how quaternions are utilized in the model to be able to make 

future changes if necessary.  In addition„ he requested a 

modification to the infrared signature subroutine (SIGNAL) 

which would incorporate infrared data generated for the 

cruise missile and not currently in the model. 

Background 

In 1843 Sir William Rowan Hamilton developed a new 

algebra of quadruples of numbers which he named quaternions. 

His concept was intended to represent motion in three-space, 

predating the familiar vector methods of J. Willard Gibbs. 

Hamilton's quaternion theory, although the foundation of 

vector algebra, was from the viewpoint of the student of 

mathematical physics, a confusing mixture of scalars and 

vectors.  The vector wh.ich represented three-dimensional 

motion seemed to play a servile role as part of the quatern- 

ion.  The real power of the quaternion, however, came from 
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the vector aspects of the algebra which was later extracted 

by J. Willard Gibbs.  Gibbs simplified the quaternion meth- 

ods of Hamilton and originated the vector analysis techniques 

that we are familiar with today (Ref 3). 

Because the concept.of a three-dimensional vector was 

more acceptable than the hypercomplex quaternion (Ref 9), 

vector algebra, a subset of quaternion algebra, was adopted 

by the mathematical community to describe three-dimensional 

motion.  With the advent of recent computer missile simula- 

tions? however, different computational methods were 

required to reduce the computation times to the real times 

of flight. To accomplish this, the concept of quaternion 

algebra was resurrected and found capable of not only reduc- 

ing computation time but also storage space normally required 

by the nine element direction cosine matrices. 



II Subroutine SIGNAL 

The missile model obtained by CMIST was designed to 

work with actual launch and target aircraft in mock combat 

on a controlled range. While the aircraft maneuver, data 

is relayed to a range computer by telemetry pods. The com- 

puter tracks and stores their flight profiles and also does 

real time missile launch calculations using the missile 

model to determine if a hit or miss is achieved. 

The missile model acquired by CMIST was to do some 

effectiveness studies of several air-to-air missiles against 

the cruise missile. The model, however, did not contain 

the required data to calculate the infrared signal generated 

by the cruise missile and could not be used until the data 

was incorporated into the model. 

The infrared signal is calculated within the model in 

a subroutine called SIGNAL. The subroutine then uses the 

approximation assumption of the basic model that the signal 

strength is directly proportional to the maximum line of 

sight tracking rate- Utilizing this assumption, the sub- 

routine compares the calculated signal to several threshold 

values to determine if the strength of the signal is adequate 

for the gimbaled seeker head to track the target aircraft at 

the calculated line of sight rate. 

The modification proposed not only involved the incor- 

poration of the infrared data, but also required a redefi- 

nition of the line of sight reference. This involved deter- 

mining the line of sight in the target coordinate system by 

means discussed in the Methodology. 
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"-11    Methodology 

Two major problems were encountered In the modification 

of the CM1ST missile model. First, the model did not uti- 

lize standard direction cosine coordinate transformations, 

an accepted technique to represent spatial relationships 

among several coordinate systems? in SIGNAL.  Secondly, the 

method employed by SIGNAL involved hypercomplex quaternions 

which are foreign t© many engineering students.  (The 

interested reader will find a discussion of quaternion 

development and their properties in Appendix A.)  This sec- 

tion discusses the relative merits of direction cosines and 

quaternions, with a justification for the methodology selec- 

ted. 

Direction Cosines 

Direction cosines have been the accepted engineering 

technique to represent spatial relationships among several 

coordinate systems. They are relatively easy to use 

because direction cosines follow the rules of conventional 

vector algebra and can be stored in a computer as elements 

of an array. A vector can then be defined In another coor- 

dinate system by utilising the array as a directional cosine 

matrix and using matrix multiplication to transform the vec- 

tor coordinates. For example, the vector x will be redefined 

in some primed coordinate system by multiplying it by the 

Direction Cosine Matrix (DCM) which links the unprimed coor- 

dinate system to the primed system 



x(DCM)  -  x 

Direction cosines, although familiar and relatively 

easy to use on a computer also have several disadvantages. 

These consist of 

1) Each matrix requires a nine element storage allo- 

cation. 

2) Trigonometric functions are required to form the 

elements. 

3) Many multiplications of the elements must be per- 

formed in a proper order. 

The direction cosine method would result in a major rewrite 

of the subroutine SIGNAL but would enable a familiar engi- 

neering method to be employed. 

Quaternion Method 

The quaternion method employed by the model derives a 

quaternion to relate one coordinate system to another. This 

methodology is discussed in Appendix B. The quaternion q 

then operates on a vector x converting it to x*1 by 

q"1 x q 

where q" is the inverse of q.  (The interested reader is 

again referred to Appendix A.) 

Quaternions consist of only four elements and thus are 

advantageous over direction cosines since they require fewer 

arithmetic operations and less storage space. The disadvan- 

tage of quaternions is the requirement of understanding their 

unique properties and operating rules. 
5 



Selection 

To avoid a major revision of the computer code* quater- 

nions were selected to modify SIGNAL.  First, quaternions 

did not require a conversion of the vectors from the qua- 

ternion factored format into the conventional format used by 

direction cosines.  Secondly, after the operations were com- 

pleted the resulting vectors would have to be reconverted to 

the factored format used by the rest of the program.  Fin- 

ally, the construction of direction cosine matrices could 

be avoided along with a dimensioning of their storage space. 

Quaternions were perceived to be the way to go because their 

methods would have to be understood in either case. 



IV Modification of SIGNAL 

The modification of the subroutine was to incorporate 

the infrared data supplied by CMIST. The data used was 

generated by a computer program into a set ©f data points 

at various azimuths and elevations about the cruise missile. 

This data was then incorporated into several arrays which 

served as a tabulated reference,  the idea being to enter an 

array with an appropriate range and angle off from the tar- 

get and be able to select the relative infrared signal 

strength. 

Coding 

The principal problem in obtaining the infrared signal 

was to convert the missile seeker line of sight to the tar- 

get coordinate system so the tabulated data could be used. 

The range vector is defined in the universal coordinate 

system. This same vector in the quaternion factored format 

iss 

r •  Crx + kZ)i . 

A quaternion q, which relates the universal coordinate sys- 

tem to that of the target coordinate system is used t© 

redefine r in the target system by 

q•1 r q  . 

The interested reader is referred to the methods of Appendix B. 



With the range vector defined in target coordinates, the 

relative position of the seeker line of sight in azimuth and 

elevation can be determined. With this relative position, 

a data point can be computed from the arrayed information. 

Using this data point, the received signal strength is 

reduced by a factor of one over the range squared. Upon 

determination of the strength of the received signal, the 

program reverts to the original line of sight rate tolerance 

calculations and the simulation continues. 

Validation 

The modification to SIGNAL was validated by comparing 

the infrared signature output of the old model with that of 

the modified routine. To accomplish this, the function 

which formerly computed the infrared signal based upon 

aspect angle and range was extracted from the original 

model. Using this extracted function, a series of data 

points were generated to fill the azimuth and elevation data 

arrays used by the modified routine. Once the arrays were 

filled, infrared signal strengths were generated using both 

models for various aspects and ranges of three, six and 

nine thousand feet. 

Old Model 

The original infrared data generating function used in 

the old model, utilized data generated for a particular air- 

craft by the Navy at China Lake. This data %*as plotted into 

several cardioid shaped curves (Figure 1) which varied in 

size as a function of range and altitude. A function was 





fit to these curves for different aspeets with parameters 

of atmospheric attenuation, range and the cosine of the 

aspect angle. The old model used this functional format to 

determine the infrared signal. A unique feature of this 

function was that the output was in the form of decibels 

which are called Phasey dB's. The data supplied by China 

Lake was in decibels formed by taking the natural logarithm 

of the signal and multiplying it by a factor of ten rather 

than the standard method of ten times the logarithm (base 10) 

of the signal. The model uses these Phasey dB's in all of 

its signal comparisons, something to be aware of when try- 

ing to follow the logic. 

Comparing Results 

Once the old infrared function was understood, data 

points were generated for 1000, 5000 and 13,000 feet ranges 

at various aspects and elevations. These data points tin 

watts/steradian) were next inserted into the azimuth and 

elevation arrays utilized by the modified routine.  (The 

interested reader is referred to Appendix D.) 

Once both infrared routines were set up using informa- 

tion based upon the same aircraft, a comparison set of data 

was generated by both methods to determine the accuracy of 

the new infrared routine. The results are as shown in 

Table I. 

Some typical launch ranges for an IR missile at various 

aspects in the rear hemisphere of the target (.180® being a 

direct tail shot) were selected. A comparison of the old 

10 



and new 1R signature routines shows that the new model var- 

ies at most by less than two-and-one-half percent from the 

old and that at an extreme aspect angle. 

TABLE I 

Comparison of Old and New Models 

Range Aspect 

IR Signal 
(Phasey dB) 
Old    New 

1 
Difference 

3,000 
6,000 
9,000 

180 
180 
180 

102.8 
87.9 
79.1 

103.4 
88.0 
79.4 

0.6 
0.1 
0.3 

3,000 
6,000 
9,000 

170 
170 
170 

104.2 
89.0 
80.0 

103.6 
87.7 
78.9 

0.6 
1.5 
1.4 

3,000 
6,000 
9,000 

165 
165 
165 

102.7 
87.3 
78.3 

103.7 
87.5 
78.7 

1.0 
0.2 
0.5 

3,000 
6,000 
9,000 

150 
150 
150 

98.0 
82.2 
73.0 

99.2 
82.5 
73.5 

1.2 
0.4 
0.7 

3,000 
6,000 
9,000 

140 
140 
140 

94.6 
78.7 
69.3 

95.8 
78.7 
69.6 

1.3 
0.0 
0.4 

3,000 
6,000 
9,000 

135 
135 
135 

92.9 
76.8 
67.3 

94.3 
77.1 
67.9 

1.5 
0.4 
0.9 

3,000 
6,000 
9,000 

120 
120 
120 

87.2 
70.7 
61.0 

88.8 
71.1 
61.6 

1.8 
0.6 
1.0 

3,000 
6,000 
9,000 

105 
105 
105 

83.1 
66.3 
56.4 

84.9 
66.7 
57.1 

2.2 
0.6 
1.2 

3,000 
6,000 
9,000 

90 
90 
90 

82.6 
65.5 
55.4 

84.6 
65.9 
56.1 

2.4 
0.6 
1.3 
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v Summary and Conclusions 

Quaternions, although initially appearing to be a com- 

bination of a vector and a scalar, possess several desirable 

properties when compared to conventional vector methods. 

These properties have been applied in a missile model which 

has been acquired by the CMIST branch at ASD.  The model 

was obtained to evaluate several air-to-air missiles against 

a cruise missile target. 

To use the model, data which represent the cruise mis- 

sile characteristics had to be incorporated. This required 

a working knowledge of some of the internal mechanics of the 

model and how the quaternions were utilized. A working know- 

ledge of the model's architecture and coding was also required 

to modify the subroutine SIGNAL which would take infrared data 

supplied by CMIST and integrate it with the existing model. 

This research accomplished the incorporation of the required 

data and compared the results with the infrared data gener- 

ating function which the model has originally incorporated. 

The most significant result of this research was the 

modification to the subroutine SIGNAL and a greater 

detailed description of how quaternions are used in the model 

than available in the documentation. The modification of 

SIGNAL saved the Air Force from contracting the work out and 

is currently capable of generating the required data to com- 

plete an evaluation of the cruise missile. Also, utilizing 

the detailed description of the computer code along with the 

description of how it applies to the quaternions, further 

modifications should be possible if necessary in the future. 
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Appendix A 

Quaternions 

Initial Development 

Quaternions are specified using four real parameters, 

a scalar and three other units i, j and k. The four param- 

eters specify the properties that a quaternion possesses 

when it acts as an operator. These properties allow for the 

rotation of a line vector through a given angle about an axis 

through its origin and a stretching of the vector by a given 

ratio.  Of the four parameters; two are required to specify 

the axis of rotation, one to specify the angle of rotation 

and one to specify the ratio of stretch (Ref 8). 

A quaternion q can be expressed in the form 

q * q0 + qxi + q2J 
+ q3* • 

Thus it consists of two parts, a scalar qQ and a vector 

q • qxi + q2J 
+ q3

k 

where q,, q2 and q, are the rectangular Cartesian coordinates 

of a point P and i, j, k represent unit vectors in the posi- 

tive direction of the x, y and z axes, respectively. The vec- 

tor defines a line-vector from the origin 0 to the point P 

(Ref 8). 

Two quaternions q and q' are defined to be equal if (Ref 2) 

q - q0 + %i + q2J 
+ q3

k 

q'  s qj + q{i + q^j + q^k 
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and   q0Mj » qx - q{ # q2 - q2 
and ^^3 • 

There also exists a zero quaternion (Ref 2} 

0 + Oi + Oj + Ok   or simply   (0,0,0,0) 

such that 

q + (0f0r0,0)  - qQ + q^ + q£j + q3k = q . 

Two quaternions are added by adding their scalar parts 

and the corresponding coefficients of their vector parts 

CRef 2) 

q + q1     -     <q0
+qo>   +   Cq^+q-pi +   tq2+q£)j   +   (q3+q^)k   . 

Thus the sum of two quaternions is also a quaternion. 

For any scalar X a quaternion can be defined CRef 2) 

Xq  -  XCqQ + qxi + q2J + q3k) 

=  XqQ + Xq^ + Xq2j + Xq3k . 

Also for X * -1 

(-l)q = -qfl - qxi - q2J - q3k 

and 

q + t-l)q!  -  tq0-q£) + Cq^qfJi + Cq2-q£)j + Cq3-qJ)k . 

So, quaternions obey the algebraic laws of addition and 

scalar multiplication tRef 2). 
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It can also be shown that for any quaternions pr q and 

r and any scalars p and X (Ref 2) 

p + q q + p 

(p+q) + r p -4- Cq+r) 

Xq  *  qX , (Xp)q Mpq) 

(X+P>q Xq + yq 

and X(p+q)  =  Xp + Xq . 

To examine quaternion multiplication, the vector ele- 

ments of a quaternion must be examined.  In a Cartesian 

coordinate system, three mutually perpendicular axes exist: 

xr y and z.  For a right-handed system, the positive direc- 

tions are as shown in Figure 2.  Rotation is defined as 

positive when viewed from the origin CO) as a clockwise 

rotation of the coordinate axis.  Thus rotation from x to y 

about z, y to z about x, and z to x about y are all positive 

rotations. Counterclockwise rotation is defined as nega- 

tive tRef 7) . 

JL_ 

Fig. 2. Cartesian Coordinate System 
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The vectors i, j and k are defined as unit vectors 

oriented along the x, y and z axes, with each specifying a 

direction along its respective axis and possessing a magni- 

tude of one. The rotation of the axis can be defined by 

the multiplication of two of the unit vectors, i.e. the 

multiplication of i into j or ij is defined to be the turn- 

ing of j by +90° in the plane normal to i (Ref 6).  There- 

fore 

ij = k . 

Similarly, 

jk = i , ki = j 

and       ji = -k , kj = -i , ik = -j 

Furthermore, since 

ij = k 

and ik = -j 

then 

or 

-j ik = 

i2J 

i2 = 

iCijl 

- -j 

-1 . 

= i2J 

i2 - k2 = ijk = -1 . 

therefore 

Similarly 

All the familiar algebraic rules of multiplication 

except for the commutative law are valid for quaternions. 

17 



This relates to the fact that the order in forming the pro- 

ducts of i, j and k determines positive and negative rota- 

tions and,, therefore, the order must be preserved (Ref 6). 

Prom the previous discussion a quaternion product can 

be defined (Ref 2). 

qr =  (q0 + qi±  + q2j + q,k) (r0 + ^i + r2J + r3k) 

" %r0  ~  *lri " ^2r2 " q3r3 + % {rlL  + r2* + r3k) 

+ ^tq^i + q2j + q3k) + (q2r3 - q3r2)i 

+ tq3r1 - qxr3)j + (q^ - q^Jk 

«0r0 ' qlrl " q2r2 - q3r3 * W + r2^ +r3k) 

+ r0(q;Li + q2j + q3k) + 
rl  r2  r3 

How consider a vector v, which is a special case of a qua- 

ternion whose scalar portion is zero 

v = 0 + ai + bj + ck  . 

The quaternion product of two vectors v and v' would be 

w« = 0 - aa' - bb« - cc8 + 0(a*i + b'j + c'k) 

+ 0(ai + bj + ck) + 
i  j 
a  b 

k 
c 

a' b'  C 

18 



or 

w8  =  (aa' + bb1 +«') (-1) + 
i  j  k 
a  b  c 

a'  b'  cs 

There exists a emit sphere with origin 0 and an orthagonal 

coordinate system as shown in Figure 3. The vector v 

is defined as oriented along i with vector v' located in the 

i,   j plane, both with origins at 0 and v' forming an angle 

9 with v.  C6 < 90°) 

Fig» 3. Unit Sphere 

The vectors are now defined 

ai 

and v'  = a«i +b'j  .   a« = a 

By definition 

a , |v'|  =  [Ca')2 + (V)2]1/2 

Sine  a_bJ   =  b8 

[(a'}2" + (b')2]1/2    |v> 

19 



CosO 
a« 

[(a')2 + (b')2]1/2    |v8j 

v -  |v|i and v«  =  |vf|cos8i+ jv!|sin9j 

A vector product can now be defined as 

vv"  = |v|i [|v!|(icose + jsin6)] 

= [v|jv« j (- cos6 + ksinG) 

or 

w« = - |v||v'Jcose + |v||v* |ksin6  . 

Substituting 

w' - a(V(a')2+(b')2)cose + a(V(a')2+(b')2/ksin9 

but 

V(a')2+(b')2 cose = a« 

and 

V(a')2+(b')2 sine • b« 

so 

vv1 - - aa' + ab'k . (1) 

Now consider the quaternion vector product 

2® 



w'  • -(aa° 4- bb1 4- cc') + 

i  j  k 

a  b  c 

a' b«  c" 

but 

c' 

so 

vvs  » - aa' + 

i j k 

a 0 0 

a'  b«  0 

or 

w' - aa1 4- ab'k (2) 

which is the same as (1).  The product of two vectors can 

be defined as a quaternion whose scalar part is 

S(vv') - aa1 

or equivalently -jvjJv'jcos6, and vector part is 

V(vv») ab'k 

or equivalently jvjiv'|ksin9.  These correspond with the 

scalar and vector products as defined in the vector algebra 

of J. Willard Gibbs (Ref 2).  Gibbs defined the scalar or 

dot product of two vectors u and v as 

u • v ju|jv|cos8 

and the vector or cross product as 

u X v' •  luiIvIsinBe 
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where e is a unit vector perpendicular to u and v and 9 is 

the angle between u and v. Thus a quaternion product may 

be defined as 

qq' qXq'-q«q'  . 

Properties of Quaternions 

The conjugate of a quaternion is similar to the conju- 

gate of a complex number (Ref 2).  If 

q = q0 + qxi + q2J + q3
k 

then the conjugate of q or q* 

q* * q0 - qLi - q2J - q3
k • 

The product of a quaternion q and its conjugate q* is 

defined as the Norm of q or N(q) 

N(q) qq* = (q0+q1i+q2j+q3k) (qQ-q^-q^-q^) 

2   2   2   2 = qj + qj + q2 + q3 

and further 

q*q qq* (Kef 2) 

The Norm of a quaternion is a scalar and N(q) * 0 implies 

that q» =* q, » q2 » q3 
s 0.  If N(q) • 1, q is called a unit 

quaternion (Ref 2). 

Prom the quaternion product of two vectors 

i  j  k 
w' =*    »(aas + bfo' + cc') + 
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the conjugate of the quaternion formed by the product is 

(w')* 

or equivalently 

-(aa1 + bb%  + cc8) - 

i j k 

a b c 

as  b'  C 

(w')* • v'v - -(aa1 + bb1 + cc") + 

For any two quaternions 

Cq0 + q) .  q' - <qj + q') 

i  j  k 

a' b1  c' 

a  b  c 

whose product is 

qq!  =  (qQ + q) (qj + q»)  «• qQq£ + qQq' + qjq + qq' 

the conjugate of their product will be 

(qgf) M* qoqo " qoq' " qoq + (qq,)* 

qoqo - qoq' " qoq + q!q ' 

or 

(qq<) (qj - q')(q0 - q> 

Therefore, the conjugate of the product of two quaternions 

is equal to the product of the individual conjugates taken 

in reverse order (Ref 2). 

(qq')*  -  (q')*(q)* 
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Prom this property, the Norm of the product of two qua- 

ternions can be determined. 

N«qq8)  - (qq'Mqq1)* 

- q«q!)(q')*q* 

- qN«q')q* 

Sine© N(q) is a scalar 

qN(q»)q*  -  qq*N(q«)  - N(q)N(q')  . 

If q is not the zero quaternion then N(q) ^0. Using 

this fact the inverse of q can now be defined (Ref 6). 

N(q)  -  qq* 

1  " qN?qy 

or 

q"1  *  N?qT 

and 

W"1  -  qN?qT '    Hqf " X 

It can also be shown that 

N(q  >  " N(qT  * 

Using the concept of the inverse of a quaternion, the prop- 

erty of division can now be addressed. For any three qua- 

ternions p, q and r where 
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qr - p  or  rq » p 

solutions for r may be obtained by multiplying both sides 

of the equations by the inverse of q.  In this way two solu- 

tions are apparent 

q" qr - q" p  ,*  rqq"1  - pq"1 

or 

*!    s q"XP i r2 - pq"1  . 

where r. is called the right hand quotient of p by q and 

r2 is the left hand quotient of p by q. These solutions in 

general are different and demonstrate again that order must 

be preserved in quaternion multiplication (Ref 2). 

Finally, from the Norm of q 

N(q)  - qq* 

2    2    2    2 
" 3(3 + *1 + <*2 + *3 

-  qJ+1312 

and the magnitude of q is defined 

|q|  -  [N(q)]1/2  -  £qj + q2 + q2 + q2j1/2 

rq? + |q|2lV2  .  (Ref 2) 

as 



Product of a Quaternion and a Vector 

T© review, the quaternion product of two vectors u and 

v 

.*.•>       A   „ -a> J* -» 
UV  *  U X V » U • V 

and the product of two quaternions q and r 

qr -  (qQ+q)(rQ+r)  - qQr0 + qQr + rQq + qXr - q-r  . 

The conjugate of q is 

q* = q0 - q 

and the Norm of q is 

N(q)  - qq*  = q2 + |q|2 

where 

q s g1i + q2j + q3k 

and 

|q| - ^l + 4 + 4)1/2 

The magnitude of the quaternion q is 

|q|  -  (N(q))V2  -  CqJ + |q| 

For a vector x and a quaternion q, where 

-*.   -1     q*     ^0 
q - q0 + q , q   - ^f    - -^y 

ctn - q 

28 



the quaternion product of q and x is 

qx - qAx 4- (qxx) - (q*x) 

^  •  qQ3S + (xXq) - (x-q) 

The right hand quotient of q  and x is 

-1-     q* -    {%  " *)x 

q x qTX  =   NlqT 

qQx - (qXx) + (q-x) 

 STqJ  

or 

a-Xx - 
<*0X + (xXq) + (q« •x) 

q   x 
N(q) 

[uotie nt of x and q~ is i 

te1 
- 

x(qQ  - 
N(q) 

q) 

. *0* " (xXq) + (X- •q> 
N(q) 

or 

,     qQx 4- <qXx) + <x-q) 
xq   -   N(q) * 

In general, the product of a vector and a quaternion yields 

a quaternion whose scalar part is the dot product (x*q) and 

whose vector part is the scalar of the quaternion times the 

vector and the vector cross product (qnx + (qXx)}. However, 

in the case where q and x are perpendicular (q*x = 0), and 

the vector qnx + qXx is obtained. In  this case both qQx 

and qXx are normal to each other and the resultant vector 
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qQx + qXx is normal to q. Figure 4 shows the geometrical 

relationships of xq and q oriented into the page (Ref 5) . 

CxXq) 

Fig. 4. Vector Times Quaternion 

It can be seen that 

tana = 1*1Iql 
q0l*l 

<3n 

also 

Sq| 

,*q 

- HlSJIq!)2 + tq0lx!)
2l1/2 

= C|^l2|q|2f  q^l2]1/2 

- [i*l2Cq2  +   lql2)3V2 

- E|x!2|q|2]1/2 

- I«l|q|      • 

Figure 4 shows that a is a negative rotation around q, and 

in summary multiplying a vector ic on the right by a quatern- 

ion q (where q is the vector part of q) rotates the vector x 

negatively by an angle tan• f^-M and changes its length by 

a |q| factor (Ref 5) . 
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Now consider the right hand quotient of q  and x, 

N(q) 

Since x and q axe  perpendicular, 

q*x  =  0 

and the results are similar to the previous xq except the 

magnitude is reduced. 

r/_ _vo    ,„    l-U 2,1/2 

|q  Xx|      =     \\ N(q)   "/       '  \N(q) 11 

• [w«ar 
= w 

Since   |q| =     |N(q)|1/2 then 

N(q)      =      |qj2 

Therefore, 

1                 lx| 
|q    x|     -    — 

|q| 

and 

|S|1''    I-II?I 
t,n(1  .   srg).. .   ^i1"31   _ \i\ 

<30l*l          %\x\ % 

N(q) 
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Because x is perpendicular to q, xq is also perpendicular 

to g and if q• is applied to xq to form a vector y 

y  =  qOT (xq) 

y     »  q"° xq  . 

The vector y is rotated from x negatively by an angle of 

9 = 2a.  Now consider a special case where the vector x lies 

along q and has a magnitude of X\q j.  Then 

x -  Xq 

where X  is a real number.  If the same operation is carried 

out 

y a q" xq ~     q~ (Xq)q 

y   =   q-1[Mq - q0)3q 

=   A[q~xq - q"1q0Jq 

-  XC1 - q^lq 

=  Mq - qQq
-1q] 

= Mq - qQJ 

=  Aq ~ x 

So* a vector that lies along q and operated upon by q~ xq is 

not changed in magnitude or direction (Ref 5). 
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Finally, consider a general vector x and a quaternion 

q = qQ  + q*  The vector x can be resolved into components 

(Ref 5) 

x = xx + x2 

along q and perpendicular to q such that 

where 

and 

where 

q|2 

q°x 

15 
^- -  |x|  along q 

(qXx) X q -. 

|q|2 

qXx 

|q| 
x|  perpendicular to q 

Pig. 5.  Components of x 

The dot product of j  and x (oiiented as in Figure 5 5 

with the angle 8 between them is 

q«x =  |q||x|cos6 
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or 

|q||x| 

The cross product of q and x is 

qXx  =  jqj|xjsing 

or 

|q|.|S| 

Therefore, 

xj  =  |x|cosS »  |x| ~^1^- 
|q||x| 

or 

and 

11   131 

x2|  - |3| Bine - |xi r-^: 
q xi 

or 

i,l   -  as 
2      |q| 

Now a vector y exists such that 

y == q xq 

q"1^ + x2)q 

q x±q  + q x2q 

x1 -I- g" x2q = y1  + y2 
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where 

x,  along q 

and 

y2 = q x2q perpendxeular to q 

The vector y„ is normal to q and is a negative rotation 

about q through an angle 

8=2 tan -i m 
*0 

When q is oriented along the Cartesian x-axis, the rotation 

from x„ to Yo  ^s a negative rotation,  but this negative space 

rotation is equivalent to a positive rotation of the coordi- 

nate system,    with q°  xq representing a positive rotation 
•*• —1 of coordinates and qxq  a negative rotation (Ref 5). 

Tilt and Roll Quaternions 

To utilize quaternions in computer programs rotating 

coordinate systems in three dimensions, they must be fac- 

tored into a convenient format (Ref 1). This format fasters 

the quaternion into two quaternions which divide the rota- 

tion into two successive transformations, tilt and roll. 

Because of this, the factored quaternions are called the 

tilt quaternion and the roll quaternion (Ref 5). 

A quaternion q = qQ + q-i + q,j + q,k can be written 

as q = qQ + q^ + k(q3 + iq2) , where k(q3 + iq2) » jq2 + kq3. 

For any complex number a + bi, 
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k(a + bi)  -  (a - fai)k , 

or k times a complex number is equal to its conjugate times 

k (Ref 1). Now q can be written 

q  -  QQ1 + kQ32 

where 

Q01  = q0 + iql  and Q32  = q3 + iq2  ' 

The conjugate and Norm can be written: 

q* - QQ1 - kQ32 , where QQ±    - qQ - iqx 

NCq)  =  !Q01S
2 + |Q32|

2 « ^o + ql + q2 * q3 

Similarly, a vector x -  ix_ + jx2 4- kx , may be factored 

into 

ix. -f kZ   where Z = x- + ix2 

or 

x =  (x_ 4- kZ) i where Z ~ x2 - ix3 

For any two quaternions q and r, their product may now 

be written 

qr  -  (Qfll + kQ32) (RQ1 * kR32) 

" Q01R01 + Q01kR32 + kQ32R01 + kQ32kR32 

" Q01R01 + kQ0l
R32 + kQ32R01 + k2°32R32 

s  (Q01R01 ~ «32R32) + k(Q0l
R32 + Q32RQ1} 

34 



Consider a quaternion q = QQ1 + kQ32 with qQ ^ 0.  The 

quaternion can be factored in two parts 

Q32 

^32 (1 + kT)QQ1 - tr where T = ~=- 

or 

The tilt quaternion t is therefore 

t = 1 + kT 

and the roll quaternion is 

01 

t„ + it 2  " 

£01 q0 + iqx 

Tilt 

The vector portion of the tilt quaternion kT is located 

in the plane normal to the x-axis.  It transforms the x-axis 

by t xt a new axis xB representing a tilt from x results 

(Figure 6). 

Fig. 6.  Tilt 
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The vector t remains normal to x and xr and represents the 

axis of rotation of I to x1 through an angle 6. The tangent 

of 9 being 

tan | - J|L .  ,?,  .  |,,  .  ,t* •*§>*'* 

The y and z axis are also tilted to y! and z8 axis but this 

is not shown in Figure 6 (Ref 5). 

Roll 

The roll quaternion r has the form r = (1 + ir.).  The 

inverse is 

-1     r*     r# r    " rcr • ^ • 

So for a given vector x = (x1 + kZ)i and an x" = (x! + kZs)i 

where z - x2 - ix3 and Z« - xj - ix£, 

x!  = r_1xr  .  (Ref 5) 

r represents a roll about the x-axis through an angle 4>. 

This  is accomplished by 

(x£ + kZf)i    -    r"1^ + kZ)ir 

or 

(x*   + kZ8)i    =     (x,   + kZ -)i 1 1 r^ 

Thus 

xi    a    xl 
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and 

Z £ r°r 
r5*      rr 

The angle $ is defined by 

r2 

WET 1   • 

tan | rx   .  CRef 5) 

Therefore 

r * 1 + i tan 2 

rj2 m     rr*   ^     ±  + tan2 | 

r2 =  (1 + i tan |) (1 + i tan |) 

si- tan (j) + i 2 tan J 

and 

cos<f>   + i  sin<?> 

For a positive roll 

or 

and 

Z (c©s<f>   + i sin<f>) 

x^ +  ix3    =     (x,  +  ix3) (cos<f>   + i  sin<f>) 

^©refora 

:2    =    x2cos<^   " JSjSin^ 

:l     =    x2sin<f>   + x.,cos<f> 

(Ref  5) 
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Appendix B 

CoDX'o:a:.^nt  Ceaiputer Coding Relations 

CD^pi©?£ Factoring 

The tilt quaternion t represents a transfer of coordi- 

nates from an unprimed system to a primed system (Ref 5). 

A general vector x defineds 

x = (x.  +  kZ)i with Z = x2 - ix- 

will become 

x«  =  (x£ 4- kZ')i with Zs  = x^ - ixJ 

This is accomplished bys 

x8  = t"1 x t 

where 

t = 1 + kT and T » t3 + it2 

By expanding 

xa  =  (1N7tf
T) * U + kT) 

(1 "" kTi  x (1 + kT) 
1 + iTi2 

Let 

d -     2  ,• (3) 

1 + |T|2 
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then 

x1 » | (1 - kT) x (1 + kT) 

« | (1 - kT) (xx + kZ)i {1 + kT) 

- | (1 - kT) (xx + kZ) (1 - kT)i 

Expanding 

(xjl + kZ')i * | [(x1 + kZ - kTxx - kTkZ) (1 - kT) i] 

= j   [x., - x,kT + kZ - kZkT - kTx, 4- kTx,kT - 

kTkZ + kTkZkTli 

-  • [x., - kx^T + kZ + ZT - kTx1 - x^TT + TZ - kT Z]i 

=  | [xx + ZT - x^T 4- TZ + k(Z - 2Tx1 - T
2Z)]I 

Cx^ + kZ8)i = | [xx - xL|T|
2 -I- ZT 4- TZ 4- k(Z - 2Txx 

- T2Z)]i 

x£ + kZs  « | [xL - xjTJ
2 + ZT 4 TZ] 4 | k[Z -  21xl 

= T2Z]  . 

ih®r®fcre 

x£    =    |   [xx(l  -   |TJ2)+  ZT + TZ] 

and 

2s     =    |   [Z  -   2TxL  -  T2Z]      .     (Ref  5) (4) 

Let 

b    =    x-   + x' 
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then 

b     •     x1  + |   [Xj^d  -   |T|2)   +   ZT  +  TZ] 

but 

ZT =  (x2 + ix3)(t3 + it2)  = »2
t3 ~ x3fc2 + i^x2t2 + x3fc35 

and 

TZ  =  (t3 - it2)(x2 - ix3)  = 
x2fc3 ~ x3fc2 " iCx3t3 + x2t2) 

So 

ZT + TZ  =  2x2t3 - 2x3t2 

&21& 

b - | [| x±  + xx(l - |T(2) + 2Re(TZ)] 

where 

Re(TS) = x2t3 - x3t2  „ 

Substituting 

| -  1 + JTJ2 

d ,.. ,T , I•I2» ^ „ ,,   imi2 b = | [Xl(l + |T|Z) + x1(l - |TP) + 2Re(TZ)] 

b = | [2xx + 2Re{TZ)] 

b = d lx±  + Re(TZ)]                          (5) 

b - d [xx + t3x2 - t2x3J  .      CRef 5)        (6) 
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From (4) we have 

Z1  - | [Z - 2Txx - T
2Z] (7) 

Subtracting Z from both sides 

Z' - Z  =*  I [Z - 2Txx - T
2Z] - Z 

~ Z ~ Z - I [2TX1 -I- T2Z] 

Z(| - 1) - | [2Txx 4- T2Z] 

but 

2   1  " 
1 - 3 - 

'M2   _ d f- 1   ( -TT) 1 + |T| 
2 1 + • |T]2 

Substituting 

z5 - z . -, d 
2 ZTT - 

d 
2 [2Tx1 + T 

,2f] 

= - d 
2 
T[2x1 4- ZT + TZ] 

- - f T[2x1 + 2Re(TZ)] 

Z - Zs  = - bT 

So 

Z5  -  Z - bT (Ref 5) (8) 

A reversal of the tilt transformation 

x'  - t"1 x t 

yields 

t xf t"1 = tt"1 x tt"1 
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This leads to the equations of the inverse transformation 

2 

1 + lT|2 (9) 

d(x£ - t3x^ + t2x£> (10) 

xl = b ~ xl (11) 

Z s Z8 * bT  .       (Ref 5)        (125 

Forming the Tilt for Range 

For a given vector r in an unprimed coordinate system 

there exists a quaternion t which will tilt the vector r 

to the x8-axis (Ref 5).  Let r be defined by: 

r =  (r, + kZ)i where Z = r~ - ir, 

and |r| = R. Now to determine t which will tilt the x"-axis 

to r by 

-*.     -1 -»• 
ri  _, t  r t 

or 

(r£ +  kZ8)i - t'1 r t . 

But ri = R and Z*   = 0 since x  is to be oriented along the 

x'-axis.  Thus utilizing 

b » r. + r * » r. + R 

and 

Z'  - Z - bT = 0 
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the tilt quaternion t = 1 + kT can be found, 

bT * Z 

or 

T  - I    -  ^ - ir3 1 b     R + r± 

If on the other hand, a quaternion t is desired which will 

tilt the x8-axis to r, the following equations are used 

(|r| - R, Z*   = 0, rj_ * R) . 

b = d[r£ - Re(TZf)3  - dR 

where 

where 

and 

1 + iTl2 

rx = b - R • R(d - 1) 

bT = dRT 

d - 1 = 1 " 1TL ; |T|  - tan % 
1 + |T|2 2 

A        1     L m tan2 I 2,9. d - 1 = —••—•• =—s- = cos (-y) 
1 + tan2 | 2 

d - 1 = cos0 

r1 - R(d - 1)  = R cos0 
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lte',1 R^xqsep.tP.tion  Dae to Tilt: 

Because missile seeker heads are gimbaled to move in 

azimuth and elevation Euler angles,   a tilt of the x-axis 

will be accomplished by movements constrained by the fixed 

axes (Ref 5).  The tilt quaternion 

t =  1 + kT 

where 

r2 + ir3 
R + r. t3 + it2 

transforms from i, j, k to is, j8, k' coordinates by tilting 

i through an angle x.  The case illustrated in Figure 7 

shows a change in aaimuth followed by a change in elevation 

(Ref 5) .  To model this motion, the desired roil angle <f> is 

assumed known and through the inverse of this roll transform 

the coordinates to the tilt position defined by t.  Then by 

using t  the original position is obtained (Ref 5). 

Fig. 7.  Gimbaled Tilt (T) 
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The j coordinate in the final position following the 

azimuth and elevation change can be defined in factored form 

where 

js = Oi + js2j + Ok  .    (Ref 5) 

Since j , = 0 and ki == j 
3 JL 

j  = i s 

For an inverse or negative roll 

or 

j. = j ,-W = e"1* s     s 

3.1 - lil - ° 

and for an inverse tilt 

t =  (1 + kT) 

T =  (t3 + it2) 

where 

2 d = 
1 + !Tl2 
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and 

b « d[3gX - Re(TJ^)]  = - dReCTe""1^)  .  (Eef 5) 

Therefore 

J" = J^ + bT = e""1* - dRetTe'^jT 
S        3 

but 

ji s u;2 - ijs3
} where ^3 - 0 

So 

-  ImJ58 

s 

and 

lm[e"x<l>  - dRe(Terai(|>)]T    =     0     .        (Ref  5) 

Since for any complex number A 

A ~ A    =    Im(A)     and    A * A    =    Re (A) 

|  [(e~ic|) - dRe(Te~iif>)T)   -   (ei(|>    - dRetTe"1*)!) ]     -    0 

Collecting terms 

e"1* - dReCTe^V    -    e1^ - dReCTe"1*)! 

e"1* - e^ = dRe(fe~i(|>) (T - f) 

e"1* - e1^ = 2idRe(ferai^)Im(T) 

e-i* . e
i4)    =    idlm(T) (Te~U + Tei(|>) 
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Multiplying both sides by e3"* 

L -  e2i* = idlm(T) (f + Te2i<^J 

Collecting terms, 

1 - idIm(T)f = e2x<^[l + idIm(TJTj  .  (Ref 5) 

Let 

A =  1 - idIm(T)f 

then 

A = 1 + idIm(T)T 

and 

2i<f) _     1 - idIm(T)T  _ A 

1 + idIm(T)f    A 

e
2i^ . h    = jd = -*L     .  (Ref 5) 

A    AA     |A!2 

Since 

A A a2 V2     . 
r = e1^ =  (A_)    . .A (13) 

;Af        |A| 

The roll quaternion r acts through the angle 4> to restore 

the tilted coordinates to the zero roll position where the 

tilt quaternion transforms them to their original position. 
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Forming a Roll for Range 

The roll transfer relation is formed from the relations 

=T -  — (14) 
|A| 

This is accomplished by utilizing the relationships devel- 

oped previously for a tilt for range where 

r2 - ir3 
t=l+kT T= R + x. 

and 

d        -r        b 

b    =    dR 

R + r. 
R R 

Then 

_ R 

A    =    1 -  id!m(T}T    =    1 - i — *  rl  /    -r3 \/r2  *  ir3\ 
R        \R + rj\ R + rx / 

i        •   °°r2r3 '  ir3    _     .       r3 -  r2r3i 

A    -     1 -  i       R(R + r.)     "    X ~ "RlR + r,) 

and finally 

R(R +"r1)   + R(R%"r1)   1 

r3 .        r2r3 A     =     1  - 

Rotating Coordinate Systems 

Let two rotating coordinate systems be related by a 

tilt 

t    *    1 + kT 

that is 
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Xs  -  t"1 X t 

with angular velocities 

u = iu. + j«2 + ku3 

and 

w*  -  iwi + ju' + kul 

at a later time t + At the systems will relate through an 

angle (wJAt about the u axis*  Thereforer the u rotation 

is similar to a quaternion (Ref 5) 

*At     =     X   +   Uq 

or 

1 + 4- tan 1% At 
^^ 6 «B» onmn. "ff" iia T~B ml    "i 

.««M 

Since for small angles tana = a 

qAt = 1 + ^  (Ref 5) 

Let ^g— equal a vector x,   and x = ix.,   + kX.     The components 

of x can be defined 

to-At a!2At u.At 
xi = -r~   x2  s -r-   and   x3  = -r- 

and let 

U3  +  iai2)At QAt 
X    =    ——————-»    =    -TJ—     .     o = u3 + ia>«   (Kef  5; 
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There also exists a q^ such that 

git s 1 + ixi * kx'    s x + ^T^   ' 

Let s be a quaternion that relates the unprimed coordinate 

system t© the primed system at time (t + At). Assuming s 

is a tilt as was t then 

s » 1 * kS = 1 + k(T + AT)  . 

Now the quaternions qAts and tq!  both transform from 

unprimed to primed coordinates at time t  (Ref 5). They 

also transform from unprimed to primed coordinates at a 

t + At and are therefore equivalent (Ref 5) 

^At3  =  StqAt 

where a is a real number. Let a = 1 + h so that when 

At = 0, h s 0 and qAts = ^At*  Substituting for q.t, s, t 

and q!. and neglecting second order terms 

LHS =  (1 + ix., - XT) + k(X + T + AT - ix^T) + ord(At2) 

RHS ^  (1 + ixj - TX' + h) + k(Xf + T + ixjT + hT) + ord(At) 

0 2 where ord(At)  is on the order of At . Collecting corres- 

2 

ponding parts: 

1^  - XT » ix£ - Tx' + h (15) 

X + AT - iXjT - X1 + hT + ixjT  . (Ref 5) (16) 

Equating the real and imaginary parts of CIS)s 

h - Re(TX' - XT) (17) 
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x1    • Im(XT)  s x±  + Jm(TX) 

- x£ - im(TX')      (Ref 5)       (18) 

If a quaternion p is now defined as 

p =  (x£ - Im(fXs) ^ 

then p * tul   - Im(TO') = a>, + im(TO) which constrains u» and 

w' so that p will remain a tilt from unprimed to primed 

coordinates (Ref 5). From (17) 

h = ReCTX' - XT) 

= ReCTX1) - Re(XT)  = ReCTX1) - Re(TX) 

thus 

h = Re[f(Xs - X)]  .   (Ref 5) 

Now from (16) 

AT    «    X1   - X + T[h + i(x-   + xi)} 

(X'   -  X)   + T[Re(T(X8   - X))   +  Ka^ + x£) ] 

So 

AT (1  +   |T|2)(X'   -  X)   +  T[Re(T(X'   -  X))   -  T(X«   -  X) 

+  x{x1  * xj)] 

I-   (X«   -  X)   +  iT[x*   -  Im(TXs)   + x,   +  Im(TX)] a 11 
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and 

AT  •  | [Xs - X + 2iT(x£ - ImTX')]   (Ref 5) 

Dividing both sides by At and taking the limit as at + 0 

T • j (0* - 0) + iTp   (Ref 5) 

where 

dx2        dx3 
0 -  {u3 + iu2)  and u2 = -^  , w3 - -^ 

As long as p = w. + Im(fb) = wj- Im(TOs) the unprimed and 

primed coordinates will remain related by a tilt. (Ref 5) 

1 + kT 

and T can be determined by 

T    =»    Jldt     .     (Ref 5} 

If one of the coordinate systems is fixed then u = 0, O = 0 

and p = 0 giving oil   =  Im(Tb') and 

T = — .      (Ref 5)      (19) 

9 

In both cases T is numerically integrated to find the tilt 

t (Ref 5). To relate a fixed axis system to a non-rolling 

system with rolling components in the j* k1 plane only* an 

intermediate rolling coordinate system R with angular velocity 

W_  «  W-,  + kO' "ll. 

with a)- » Im(TO') so that 
Rl 
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i - °i • 

Therefore, the tilt relating R to the fixed (F) system can 

be found by numerical integration,  if the quaternion q(t) 

relating R to F is 

q(t) •=     1 + kT(t) 

where T(t) = T + j T dt and a roll quaternion r(t) relating 

the non-roiling system to the rolling systems 

r(t)  = ^(t)/2 , 

the quaternion s{t) relating the non-rolling to the fixed 

system iss 

s(t)  - q(t) r(t)  «  [1 + kT(t)]ei(|>(t)/2  . (Ref 5} 

Therefore, a $(t) must be found such that w_ of the non- 

rolling system equals zero (Ref 5). 

The quaternion transforms s(t) from F to non-rolling 

(KR) axes at time t.  For a small time interval At and a 

time Ct - At), the quaternion [s(t - At)3   transforms NR 

to F and if 

p -  [s(t - At)]'1 s(t)  * PQ1 + kP32 

transforms NR at (t - At) to NR at time (t) .  Since UJM_ - 0 
Kl 

(«JHR ) (At)  =  Im(Poi}  =  ° 

substituting into p 
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„    -     [e^(t " At)/2][1 - kT(t - At)][l 1- kT(t)]ei<Ht)/2 
p    . ^^^^-^^^^^^^j^^^^ _. „__ 

and 

01 

[e-i»(t  -  At)/23 {1  + r(r^r€J T(t)lei»(t)/2 

i +  Ttt - At) r 

Let 

A<f»     =     *(t)   -   *(t -  At) 

then 

Pai     =     [1 + TXt-TtT T(t)]e iA<f>/2 
(Ref 5) 

If Im(P  x)   = 0 then 

arg[l + T(t - At)   T(t)   + arg(eiA(|>/2)]     =     0 (Ref 5) 

If A is a complex number, then 

A = a + bi 

When expressed in polar form 

A     =     U2  +b
2>1/2 

ta2 + b2)1'2 
+ i 7F7W*). 

or 

A    =    rtcos^ + i sin<f>)     =    re i<|> 

where r *   ta2 + b2)1/2 and cos<|> - |,   sin<f> - |  (.Ref 9) 

The argument   (arg)   of A 1st 

argA    •    $     .   (Ref 9) 
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Therefore if b(ImA) is equal to zero then cos^ » 1 and 

sin$ » 0. Which means that «j> • 0. 

Since P», consists of two complex factors 

[1 + Y(t^TtT TCt)J     and    e
iA*/2 

their arguments must sura to zero*  otherwise  $ f1 0.     Then 

argil + Tit - At)' Ttt)]     =    -argieiA*/2) 

but 

argeii*/2    .    ^ 

and 

^   •    -arg[l + Ttt - At)' Tit)] 

A*     *     -2arg[l  + Ttt -  At)   Ttt)] 

or A<{»    ^    ~2arg[l + Tit - At)   ¥TtJ"] 120) 

The model numerically integrates (20) using the present and 

past values of T which is numerically integrated from equa- 

tion   (.19)   (Jtef 5). 
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Appendix C 

Consider a coordinate system as in Figure 8.  The vec- 

tor kT, where T * t3 + it2 in the complex x2?x3 plane, 

defines a new coordinate system which is rotated about the 

x, axis through an angle y with major axis y,, y2# y3. 

y, ...^x. 

Now consider a rotation about the y3 axis as depicted in 

Figure 9.  These two rotations represent a tilt of the x. 

axis to the yi position in space. 

^3 

y. Rotation Fig. 9. 

To accomplish the tilt from x. to x* through the angle 9, 

using direction cosines, a two step process must be utilized. 

Let the rotation about x. be represented by direction cosine 
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matrix A and the rotation about y3 be represented by direc- 

tion cosine matrix B (Ref 4).  Then 

y = Ax 

rotates x to y in x  coordinates, 

y'  = By 

rotates y to y' in y coordinates.  So the original vector x 

rotated by A then B is 

Xs  = AxBy 
T    — 1 in x coordinates.  (For an orthogonal matrix A = A )  The 

completed tilt can be represented by 

x*  = Cx 

where 

C -     ATBA  . 

From Figure 8 

*2 t3 siny = - -~r-  ?  and cosy = —— 
]t| |t| 

From the quaternion definition of x, 

tan \ 

then 

2 tan""1!!! 
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(1+|T|2)1/2 

Fig. 10.  tan""1^ 

From Figure 10 

cos(tanml|T|) 

sin(tanral|T|5 

(1 + |Tl2)1/2 

(1 + |T|2)1/2 

and 

COST -    cos 2(tan" |T|) 

COST = 2 cos (tan  |T|) - 1 

1 +  IT! 
. 1 + lTi 

1 + |T| 

i - IT] 

I + IT! 

sinx = sin 2(tan~1|Tl) 

= 2 sin(tanral|T|} cos(tan"1)T|} 

_(1 + lTl2)1/2j L(l + |T|2)1/2 

2|Tl 

1 + |T|* 

Now that the functions siny, cosy, sinT and COST are defined, 

the transformation matrices can be formeds 
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10     0 

0   cosy  siny 

0  -siny  cosy 

B 

cost  sinx  0' 

-sinx  COST   0 

0     0    1 

and 

AXBA 

cosx cosysxnx 

2       . 2 -sxnxcosy cos ycosT+sxn y 

sinysinx 

sinycosycosx-sinycosy 

2        2 -sinysinT sinycosycosT-sinycosy sin ycosT+cos y 

Substituting and carrying out the vector multiplication 

1 - iTl 2t. 2t. 
x, + x- + 

i + IT!2 ^ ' l + IT!
2
 

2  i + IT!
2
 

3 

2t 

1 + |T 

2t„ 

3        1 + |Tl2 - 2t2        2t2t3 
2 xl +   , , ,„,2    X2 + , , ,.,2 X3 1 + T 1 +  T 

x3  " x, + 
1 + iTl2  X  1 + IT 

2t2t3       1 + |T|2 - 2t2 
_—:  x  + —, _______— x< 

1 +  T 

From the tilt derivation for a positive rotation of coordi- 

nates 

xl     = b - x,  and V Z - bl 
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or 

x'   -  ixJ (x,  - ix,)   - b(t,  + it-) 

therefore 

and 

where 

X2     =    x2  ~ bt3 

X3     *     x3  + bt2 

d{x,   + t,x-   -  t«x,)      and    d    =     • ?~ 13   2 2   3 ±  +   .T|<i 

Substituting 

1 - JTl 

1 + |T| 

2t 

2t- 2t. 
x, + 2 xl " 7. ,-,2 X2 " 7—^72 x3 1 +  T 

1 +  T * ~ 2t 

1 + |T 

2 

1 + |T 

2t„ 

2 """1 x, + 
1 +  T 

3    •   2t2fc3 _ x +    x 
2  i + IT!

2
 

3 

i + Tl 

2t2t3      1 + |T|2 - 2t2 

2 Xl + , ^ ,m,2 
X2 +   , , ,„,2   X3 1 +  T 1 +  T 

Therefore, the tilt quaternion gives the same result as the 

three matrix multiplications. 

Similarly for a negative roll but a positive coordinate 

transformation 

10    0 

x*  = Ax  where A =  0  cos0 sin0 

0 -sin0 cosjf 
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and 

XI    s    xl 

xl    =    x.eoi$  + x_sin4> 

xl    = x^sin^ + x-coscj? 

From roll quaternion development 

r « 1 - i tan j 

Irj2 - 1 + tan2 | 

r^ = 1 - tan^ J-i2 tan £ 

r2 = GOS<J> - i sin4> 
rl2 

Then 

Zs     =     (coscf  - i sin<|>) (x2 + ix3) 

xl + ixl    =    x^cos^  + x3sin®  -  ix^sin^  + ix^cos^ 

or 

xl     =    X2GOS<!>  + x3sin6 

xl    =    - x2sin<j}  + x3cos© 
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Rolling Coordinate Systems 

From the discussion on rolling coordinate systems in 

Appendix B, a p quaternion is formed by: 

P = qAt s 

where p relates a rolling and non-rolling set of coordinate 

systems at any time t. From the development of p, equation 

119) is derived which implies the parameter ail of the rota- 

tional velocity vector u> is 

w£ = ImCTO*) 

This is equivalent to; 

w^    =    Intt3 - it2) Cw^ + iu>£l 

s    fc3u2  - fc2w3 t21) 

To arrive at (.21) utilising conventional direction 

cosines, it must first be understood that the product of two 

quaternions will result in a negative coordinate rotation. 

This is a reversal of the direction discussed previously in 

this appendix and result in the following changes: 

t2 t3 
siny =        ,  cosy = ~   

ITI IT! 

1 - IT!
2 21T{ 

COST = •— • • j    f    sinx = -—L—1—-j 
1 + jTp 1 + |T|Z 

In addition, the cosine matrices A and B are now 
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and 

B 

10      0 

0  COSY  -siny 

0  siny   cosy 

COST  -sinT  0 

sinx   COST  0 

0      0    1 

To describe the vector 5 which relates the non-rolling 

coordinate system to the roiling coordinate system,, the 

following relation is used? 

ufctt) CCt) 

where 

ABA 

The vector u can be founds 

Ctt)CTtt) 

where 

CCt)     -     ~   CABAT) 

or 

u     -     AA     + ABBA1   + ASIA A)(AB)x 

Substituting for A,  A,  AT„   AT
?   Bf   B and BT 
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Ysinysinx-TcosY -ycosYsinx-Tsiny 

«»# 

w s  -ysinysinx+Tcosy       0        -y+ycosT 

YCOSYainx+Tsiny y-ycosx 0 

which implies 

w-J  s yd CT COST) 

wi s - ycosysinx - rsiny 

and ul = - ysinysinx + xcosy 

Utilizing the equations for o>2 and a»3, y can be solved fort 

OJ^COSY + wisiny 

•<    =       sinr  • 

Substituting into the equation for w, 

COST - 1, 
CO £    »     Cwjcosy 4- as|sinY) C    sinT—) 

Substituting for cosy, sinyf COST and sinxs 

m     L^2 + ^  /-       2|Tl2 \/l  f   1TJ2\ 
1 \      (T| |T|/   \     1  +   iT(2/\    2|T|     / 

w 

or 

ul " w2fc3 " w3fc2 (22) 

Equations (.21) and (22) are identical and the same results 

are obtained. 
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Appendix D 

introduction 

The subroutine SIGNAL was modified so that a table of 

signal strengths for various aspects and ranges could serve 

as a data base for calculations of maximum seeker line of 

sight (LOS) rates for target tracking.  To accomplish this, 

azimuth and elevation data arrays (Figure 11) were inserted 

along with the proper code (Figure 12) to evaluate the 

geometry and extraet the proper values from the data base 

to interpolate a proper signal strength. 

The missile model uses many common variables so that 

quaternions need to be defined once and then through the 

common variables be available to various subroutines as 

necessary. The program DRIVER manages the overall model by 

reading the input data, initializing the variables and set- 

ting up quaternion relationships among the various coordi- 

nate systems. Where appropriate, the coding from DRIVER 

has been,extracted to help define the work variables which 

form the tilt and roll quaternions utilized in SIGNAL. 

The following sections describe the code used to modify 

SIGNAL.  The reader is encouraged to read Appendices A and B 

prior to reading the Azimuth and Elevation section.  The 

final section is an example problem to demonstrate how the 

interpolation technique works. 
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Range 

The first computation 

ITEMPA - R * 0.001 + 1 

takes the actual magnitude of the range vector and divides 

it by 1000. This indexes the range into a range bin with 

respect to the data.  The data arrays are constructed sueh 

that the row value corresponds to the range bin and the 

column value corresponds to the LOS azimuth/elevation meas- 

ured from the target back to the missile seeker. There are 

four range indexes and 13 angle indexes. 

The value IRNG is next assigned  by determining if 

ITEMPA is between zero or one (IRNG == 1), between two and 

six (IRNG « 2),  or greater than six (IRNG = 3). These val- 

ues correspond to ranges 

IRNG =1   0 £  range < 1000 

IRNG = 2   1000 < range < 5000 

IRNG = 3   5000 £ range < 13000 

Azimuth and Elevation 

The first step in setting up the geometry of the 

missile-target relationship is to transform the line of 

sight (LOS) from the fixed (launch aircraft) coordinates to 

U (range) coordinates. This is done by calling the sub- 

routine RESOLV which utilizes a direction cosine matrix 

(FTOU). The calling sequence is CALL RESOLV(DLRF1, DLRFR* 

-DLRFI, FTOU, TEMPA, ZWORKA).  DLRP1 is the x component, 
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DLRPR is the y component and DLRFI is the z component of 

the range vector in fixed (F) coordinates.  (DLRFI is negative 

to aid later computations.)  FTOU specifies the direction 

cosine matrix to be used (F coordinates to u coordinates). 

Finally TEMPA and ZWORKA are dummy arguments which return 

the range vector in U coordinates in factored format 

r = (x1  + kZ)i 

where r, is the TEMPA value returned and Z =  ZWORKA * 

(r2 - irj.  The components r- and r3 are the y and z values 

of r in the U system. 

Now that the LOS is defined in the U system which con- 

tains both the missile and target, the LOS is redefined in 

the target system to determine the azimuth and elevation of 

the seeker from the target reference. 

Because the seeker is a gimbaled system, both a tilt 

and roll are required to match the LOS from the target to 

the seeker reference system. The required transformation 

utilizes the tilt quaternion t - 1 + k(ZTUT) and the roll 

transformation 2RUT. 

The tilt quaternion is constructed first through the 

work variables TEMPA, TEMPB, WORKAR, and WORKAI; 

TEMPB  s*  OUT*(TEMPA + WORKAR * TUTR + WORKAI * TUTI) . 

DUT is defined in the DRIVER as the factor d of the tilt 

quaternion (ZTUT) from 0 to T coordinates where 

OTT m    — 2       ,, .    (d from u to T) 
1 + |T|2 
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TUTR is the real part and TUT1 is the imaginary part of 

ZTUT which is also computed in DRIVER.  The sequence from 

DRIVER is as follows % 

TEMPA S VT + VTU1 

TUTR S3 VTUR/TEMPA 

TUT I S VTU1/TEMPA 

TEMPA S TUTI**2 

DOT TWO/(ONE + TUTR**2 + TEMPA) 

The variables used here are VT, the magnitude of target 

velocity? VTUl, the x-coordinate of velocity? VTUR, the 

y-coordinate of velocity? and VTUl, the z-coordinate of 

velocity.  The target coordinate system's orientation is 

defined by VTUl.  TEMPA in this case is 

TEMPA  =  VT 4- v,     VTUl 

TUTR VT + v, VTUR 

TUT I VT + v. VTUI 

TEMPA is then redefined 

TEMPA 

Since the tilt 

(VT +  v1) 

(1 + kT) 

2  " 

and T = t_ + it2 where t- 

then the magnitude of Ts 

VT + v. and VT + v. 
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<t» +t3
2>1/2 

DUT therefore is 

BUT 

\VT + viy        VVT + vL 

2 
1 + fc2  + fe3 1 "+   |T|2 

Returning to the SIGNAL sequence, TEMPB iss 

TEMPB = b = d[r- + t3r2 - 
t7r3^      / 

and 

r1 = TEMPA 

r2 - WORKAR 

-r, = WORKAI  (From the RESOLV calling parameter) 

t, = TDTR 

t2 = TUTI 

With these parameters the new range vector r" can be con- 

structed. 

•% 

TEMPC  =  TEMPB - TEMPA 

is equivalent to 

rj = h • ri     Cfrom App. B (11)) 
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WORKER  -  WORKAR - TUTR*TEMPB 

- r2 - t3b 

and 

WORKAI  =  WORKAI - TUTX^TEMPB 

= -r3 - t2b 

ZWORKB is defined by 

ZWORKB  =  WORKAR + iWORKBl 

or equivalently 

Z*  = r^ - ir^  .  (from App. B (8)) 

From the discussion of a quaternion times a vector 

Z'  =  Z - bT  , 

where 

Z -    r2 - ir3 = WORKAR + i(WORKAI) 

This can further be broken down into 

Zf  = r2 - bt3 - i(r3 + bt2) 

or 

WORKER »  r2 - bt3 

WORKSJ = -r3 - bt2 
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The roll due to tilt is next considered using the roll trans- 

formation from u to T coordinates (ZRUT) which is defined in 

DRIVER by the sequences 

WQKKAR = ONE - DUT*TEMPA 

WORKAI = -DUT*TUTI*TUTR 

TEMPA ~ CABS(ZWORKA) 

RUTR = -WORKAR/TEMPA 

RUTI = -WORKAI/TEMPA 

This sequence is identical t© the development of the roll 

due to tilt discussion where the roll quaternion r = (1 + ir1} 

and the roll transformation is 

ei<J> _ JL _ _A_ 

" r* "  1*1   ' 
The complex number is: 

A =  1 - idIm(T)T 

where T = t, + it_, T = t, - it- and d = DUT.  ZRUT which 
3 A, J d. 

is equivalent to —y is found by 

WORKAR  =  Re(A)  =  1 - dt^ 

WORKAI  =  Im(A)  =  -^^ 

A     ~     ZWORKA  =  WORKAR + iWORKAI 

therefore 

1 -  d(t^ + it2t3) 
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where 

iJnt(T)T « it2(t3 - it2)  - tj + it2
t3 

Since 

TEMPA  =  CABS(ZWORKA) 

and 

RUTR = Re (A) 
J 

RUT I Im{A) 
then ZRUT 

The roll takes place about the x-axis of the coordinate 

system and ZRUT is negative to transform the coordinates of 

Z to their zero tilt origin.  This is done by 

or 

ZWORKB  =  ZWORKB*ZRUT  . 

With the line of sight defined in target coordinates, 

the azimuth and elevation can be computed as 

AZ  = ATAN2(WORKER,TEMPO 

EL  =  ASIN(WORKSJ*RRECIP) 

where W3RKBR is the y coordinate, TEMPO the x coordinate, 

W0RKB1 the z coordinate and RKECJP is the reciprocal of the 

range magnitude. 
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Signal Bt"G)ngth  Interpolation 

The infrared signal strength is obtained by interpolat- 

ing the values obtained from the data matrices AZARAY and 

ELARAY. The interpolation is done by a comparison of values 

based on range, azimuth and elevation from the target. Once 

a representative signal is calculated it is compared to 

minimum standard values characteristic of the missile seeker 

head to determine the maximum line-of-sight tracking rate. 

Azimuth 

The program initially converts azimuth (AZ) to degrees, 

a more convenient working form utilizing the radians to 

degrees conversion factor (RADDEG). An index (ITEMPA) is 

next computed by dividing the value of azimuth by 15 and 

adding one to it so the lower value of the azimuth band can 

be determined.  (The azimuth bands run from the nose to the 

tail (0°  to 180°) in 15° bandwidths.) 

Next an increment term is set to one (IN = 1) for 

later use.  If the azimuth is equal to 180° then this incre- 

ment is set to zero. 

TEMPB (an interpolation angle based upon the size of 

the angle formed by the azimuth with the lower azimuth band 

angle), is now computed.  The difference between the azimuth 

and the lower azimuth band angle is calculated, and this 

difference is multiplied by 12 to place it into a convenient 

size. The band is 15® wide and if the azimuth equals the 

lower band angle, TEMPB will be zero? if the difference is 

7.5s, TEMPB will be 90°j and if the difference is 15°, 
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TEMPB will be 180°. TEMPA Is then set to the cosine of 

TEMPB times one half. 

Data points from the azimuth array are now selected 

for an azimuth interpolation.  TEMPC is chosen by the com- 

puted IRNG and ITEMPA where ITEMPA is the lower azimuth 

band.  TEMPD next selects the next higher azimuth value at 

the same range as TEMPC.  If the azimuth is 180°, IN, which 

increments ITEMPA, is zero so that an inappropriate value 

is not selected from the data matrix.  (There is no data 

point for azimuth greater than 180°.) 

The interpolation now takes place at the lower range 

band and a lower azimuth band value (BNDAL) is computed: 

BNDAL  =  (TEMPC + TEMPD)*HALF + (TEMPC - TEMPD)*TEMPA 

or equivalently: 

AZ_ Value + AZ._ Value 
BNDAL  =  —£ = 2  

AZL Value - AZD Value 
COS(TEMPB) . 

If TEMPB is 0° then cosine(TEMPB) is equal to one and BNDAL 

reduces to the lower azimuth value.  If TEMPB is 90° then 

cosine is equal to zero and BNDAL becomes one-half the lower 

plus one-half the upper azimuth values.  If TEMPB is 180® 

the cosine is equal to (-1) and BNDAL reduces to the upper 

azimuth value. For angles between these values, an appro- 

priate ratio of the azimuth values is computed. 

Next an upper limit (BNDAU) based on the next range 

data (IRNG +1) is computed in a similar manner. The same 
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azimuth indices are used but IRNG is increntented by one 

into the next outer range bin. 

Elevation 

The next series of computations are to arrive at a 

pair of elevation data points which correspond to the azi- 

muth position.  In other words, the IR signature can be 

thought to be similar along a conical path around the 

source. 

The first statement determines if the elevation is 

negative and if it is* adds 13 to the ITEMPA index to ref- 

erence the negative elevation data array. Values for TEMPC 

and TEMPO are selected as previously discussed for azimuth, 

and a similar interpolation is done for an inner range value 

BNDEL and an outer range value 3NDEU. 

The final interpolation based upon angles is accomp- 

lished by first computing an index based upon the elevation 

angle (TEMPA).  The value of the elevation is divided by 

15 and one is added to it so a lower value of the elevation 

band can be determined.  (The elevation bands run from the 

plane of the wings to the perpendicular axis of the plane 

(0° to 90°) in 15° bandwidths.) 

TEMPB, an interpolation angle, is now computed, similar 

to the azimuth interpolation angle. The cosine of the angle 

(TEMPB) is then computed and the final interpolation between 

the azimuth and elevation values takes place. The values 

computed are a lower (BNDL) and an upper (BNDU) signal 

strength. 
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Final Interpolation 

The last interpolation combines the signal values at 

distances which bracket the actual distance at the correct 

azimuth and elevation. The missile seeker will receive a 

signal somewhere in between the values calculated at BNDL 

and BNDU. The infrared signal is a function of one over 

range squared (Ref 6),   so what the program does now is com- 

pute a reference signal at the close range (BNDL) and then 

a reference signal at the far range (BNDU). The two refer- 

ence signal strengths are then combined to form a new refer- 

ence signal strength at the actual range, and finally this 

reference is divided by the range squared (TEMPD) to give 

the interpolated signal.  Let 

BNDU = S  - Upper tabulated value (Interpolated) 

BNDL = S_  = Lower tabulated value (Interpolated) 

Then 

s      = !« and s  . 
S«. 

•5 

where S _. ~ the source reference signal upper and S _ * the 

source reference signal lower. 

SrU  ~  BNDU*RBNDSQ(IRNG + 1) 

SrL = BKDL*^NDSQ<IRNGJ 

Using the calculated reference strengths, and the interpo- 

lated signal strengths a delta signal is calculated as a 
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ratio of the change in reference to the change in interpo- 

lated signals. 

AS -  (SrL - s*u> 

or 

TEMPB = (3NDL*TEMPC - BNDU*RBNDSQ(IRNG + 1))/BNDU - BNDL) 

TEMPA is now computed! 

TEMPA  *  BNDL*(TEMPC + TEMPB) 

which is equivalent to: 

TEMPA «  SL*^ + ASJ " 

The signal is then calculated bys 

RADANC  =  TEMPA/(TEMPD + TEMPB) 

+ AS\ 

+ AS/ 

or, 

RADANC  =  S_ I -~ 
L\R2 

which is the value of the signal at the inner range decreased 

by the slope determined by the ratio of the ranges plus the 

decreased value of the signal from the inner band to the 

outer band. 

The interpolated signal strength is then converted to 

Phasey decibles by: 

TENLNH  =  10.0*ALOG(RADANC*PHASEY/TEMPD) . 

where Phasey decibles are ten times the natural log of the 
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signal and PHASEY/TEMPD is a factor to convert the interpo- 

2 lated RADANC from watts/steradian to pico-watts/cm . The 

caparison logic uses the Phasey decible strength to deter- 

mine the maximum track rate of the missile seeker. 

?-J^$$2-Ji  Problem 

For an example of how the azimuth and elevation inter- 

polation works, suppose the target and launch aircraft have a 

range of 4000 feet (1RNG=2).  Further, let the aspect meas- 

ured from the target's nose be 150° and the elevation be 

-45°. 

The first value determined is ITEMPA which would be 

equal to 150 divided by 15 or 10 plus one or ITEMPA would 

equal 11,  Since 150° is less than 180°, IN would equal one. 

The interpolation angle (TEMPB) is now computed by: 

TEMPB  =  (TEMPA - BNDAZ(ITEMPA)}*12*DEGRAD  , 

or 

TEMPB  =  (150 - 150)*12*DEGRAD  . 

(DEGRAD is the transformation constant from degrees to 

radians just as RADDEG is the transformation constant from 

radians to degrees.)  This is equivalent to s 

TEMPB »  0 

Next TEMPA is computed as the cosine of TEMPB or 

TEMPA  =  cos(0)*{*5)  =  0.5 
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Now the first interpolation begins.  TEMPC and TEMPO are 

the values which bracket the azimuth or AZARAY (JRNG#ITEMPA) 

and AZARAY (IRNG,ITEMPA + 1).  Those correspond to the 

values 165 and 180.  BNDAL is now computed bys 

BNDAL  -  JTEMPC + TEMPD) + TEMPC - TEMPO cos(Qo} 

or 

Bm.T  _ 165 + 180 ^ 165 - 180 _  .-- BNDAL  =    ^     + ——"~2~~~~"     165 . 

BNDAU is computed similarly but at the next outer range 

values (IBNG + 1). 

«««*,•*     TEMPC + TEMPD . TEMPC - TEMPD 
BNDA0  .      2       

+ — 1  

where TEMPC = AZARAY (3,11) = 100 and TEMPD -  AZARAY (3,12) 

- 110.  S© 

BNDAU .  3.00 *  HO + 100 - HO, .  100 . 

The elevation values are now computed in a similar 

manner, but the elevation is less than 0° (-45®) so, 

ITEMPA  =  ITEMPA + 13 

or 

ITEMPA =  24 

The lower elevation value is: 
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BNDEL  -  BL&RAY(2g24) + EIARAY(2,25) 

2 

or 

RKin-c-T  -  157 + 168 . 157 - 168  _  . _, BNDEL  -   a  -I- x  -  157 . 

Similarly for the outer ranges 

ENDED  =  105 I  109 + 105 - 1Q9  =  105 . 

The final computation for BNDL and BNDU consists of first 

computing an interpolation angle as a function ©f the ele- 

vation.  The index ITEMPA is computed: 

ITEMPA  =  (45/15) +1=4. 

The interpolation angle TEMPB is now computed: 

TEMPB  =  (45 - 45)&12*DEGRAD 

and the factor TEMPAs 

TEMPA  =  cos(0)*(.5)  =  0.5 . 

BNDL is now computeds 

BNDL =  165 + 157 + 165 - 157  .  „, 

and 

BNDU  -  10° I  105 + i°°_Z_I°I .  100 . 
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These values ax*e then finally interpolated for range as 

previously discussed, and the value for RADANC is: 

RADANC  =  117.33 watts/steradian 



Appendix E 

DRIVER 

The model is an adaptation of a dynamic simulation 

utilized by the ACMR/I range which involved real time data 

transmission to and from the participating aircraft and the 

simulation computers. To enable the model to work inter- 

actively on a time sharing terminal, a DRIVER program had 

to be developed which would initialize the necessary param- 

eters normally supplied by the aircraft telemetry pods.  In 

addition, DRIVER also sets up the quaternions relating the 

U (earth surface) coordinate system to the T (target) 

coordinate system. 

Tilt from O to T 

The tilt quaternion is constructed in Section 2 through 

the work variables TEMPA; TEMPB? WORKAR? and WORKAI, as 

follows: 

TEMPA  =  VT 4- VTU1 

TUTR ~     VTUR/TEMPA 

TUTI  s VTUI/TEMPA 

The variables used here are VT, the magnitude of the target 

velocity? VTU1, the x-coordinate of target velocity? VTUR, 

the z-coordinate of target velocity? and VTUI, the y-coordi» 

nate of the target velocity. These lines of code are equiv- 

alent to: 
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IEMPA  » VT + VTUl VTU1 3 VI 

t3  *  TUTR 38 

V2 VTUR S V2 VT + v. 

t-  =  TUTI !H 

V3 VTUI 3 V3 VT + v. 

Since the tilt, 

t -  (1 = kT) / 

and 

t3 + it2 

where 

v3 V2 t- = T7m , ..  and t, = *2     VT + v.        3     VT + v. 

so 

T  -  TUTR + TUTI  =  ZTUT 

Roll from U to T 

The roll relation is formed by the following lines of 

codes 

TEMPA  -  TUTI**2 
DUT  =  TWO/(ONE + TUTR**2 + TEMPA) 
WORKAR  ~  ONE - DUT*TEMPA 
WORKAI  *  -DUT*TUTI*TUTR 
TEMPA  «  CABS (ZWORKA) 
RUTR  -  -WORKAR/TEMPA 
RUTI  =  -WQRKAI/TEMPA 

TEMPA is defined: 

TEMPA  =        - 
(VT + vx)

2 
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The magnitude of T is; 

r| . (t^t*)1'2 

and DOT is thereforei 

d = DUT - ——a- 
i + IT!

2 

2 —2 
1 + t2

2  + t2 

I + (TUTI)2 + (TUTR)2 

The additional lines of code follow from the roll transfer- 

nation 

e
x®    =    from Appendix B 

|A| 

The complex number A; 

A = 1 - i d lm(T)f 

where again 

fc3 + Lb2 

fc3 - ifc2 

and d - DUT 

ZRUT which is equivalent t© e1$ is found by: 

WORKAR «  Re(A)  -  1 - dt2 

WORKAI = lm(A)  • -dt2t3 
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and 

A «  ZWORKA  •  WORKAR + iWORKAI 

Therefore 

A = 1 - dtj - idt2t3 

1 - d(tj + it2t3) 

where 

iIm(T)T • it2(t3 - it2)  • tj + it2t3 

Since 

TEMPA  =  CABS (ZWORKA) 

a^d 

RTITO  -  - Re (A)  _  _ WORKAR 

|A| TEMPA 

ROT1  =  - Im(A)  «  - WORKAI 
I_ I TEMPA 
|A| 

then 

A ZRUT  =  ROTR + RUT I  * ——  . 
|A| 

Tilt Derivative 

in Section three of DRIVER, a derivative of tilt from 

U coordinates to T coordinates is calculated based upon a 

roll angle <j> from the target to the maneuvering planer NT# 

the magnitude of the normal acceleration? and VT, the 
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magnitude of the target velocity. • The code begins by rede- 

fining TEMPAi 

TEMPA  »  TUTI**2 

which is equivalent to: 

2 TEMPA  »  tj 

DOT is then calculated! 

OUT  =  TWO/CONE + TUTR**2 + TEMPA) 

or 

2 2 d  =  DUT  =  —•——5— 5- =  — =•  . 
1 + tj + tj    i + (TT 

WORKAR and WORKAI are recalculated? 

WORKAR  •  ONE - DUT*TEMPA 

WORKAI  =  -DOT*TUTI*TUTR 

or 

WORKAR •  1 - dtj 

and 

WORKAI * ~dt2fc3 

This again is equivalent to 

A •  1 - i d lm(T)T 
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or 

ZWORKA  =  WORKAR + iWORKAZ 

- 1 - dt| - idt2t3 

The roll relation from U to T is therefore: 

ZRUT  «  RUTR + RUT1  =  -^~ 
lAl 

CABS(ZWORKA) 

The derivative of the tilt is now calculateds 

TUTDR  =  (CPH1TM*RUTR - SPHITM*ROTJ)*TEMPA 

TUTDI  «•  (-SPH1TM*RUTR - CPHXTM^RUTX)*TEMPA 

This sequence can be broken up into 

CPHITM^RUTR - SPHITM^RUTl 

where 

CPHITM * cos$ 

and 

SPH1TM • sin<f> 

$  being the angle between the target coordinate plane and the 

maneuver plane.  This portion of the code projects the tar- 

get roll relation onto the maneuvering coordinate frame where 

CPHITM^RUTR -  SPHXTM^RUTJ 
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is the real axis projection and 

-SPHITM^RUTR - CPHlTM*rRUII 

is the imaginary axis projection.  The sum of the two pro- 

jections form the complex number 0s from equation (19) in 

Appendix B.  The tilt derivative is formed bys 

This is accomplished by multiplying the terms of 0' by 

TEMPA wheres 

TEMPA  =  -NT/(VT*DUT) 

where the factor (- S±) forms the derivative of 0* with 

respect to time for numerical integration and 

DUr 

which completes the denominator of the tilt derivatives 

<F     -     21    -     TUTOR + TPTDI   ,     NT* 
d DOT l" VTJ 
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